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Part 1: Mostly optimal prediction
complexity of prediction ☢ meaning of “optimal 
prediction” ☢ causal states ☢ properties of causal states ☢ 
optimality of causal states

Part 2: Mostly model discovery
the CSSR algorithm ☣ its time complexity ☣ its 
convergence ☣ hidden state models ☣ other tools for 
finding such ☣ some synthetic examples ☣ some real data

Part 3: Mostly self-organization
statistical complexity ☢ spatio-temporal systems ☢ self-
organization ☢ finding coherent structures ☢ efficiency 
of prediction ☢ emergence 



Mostly optimal prediction



Complexity of prediction

Induction - how long do we need to observe it to 
learn a good model?

Learning theory (VC dimension etc.); depends on the models we use

Estimation - how much information would we need to 
make a forecast, if we had the right model?
Calculation - how involved is it to actually calculate 
the forecast?

System calculates its future at 1 second/second (but see C. Moore, J. 
Machta, &c.)



Notation

Upper-case letters are random variables, 
lower-case letters their realizations
Stochastic process: X1, X2, ... Xt, ...
Past up to and including time t: X-

t

Future going forward from t: X+
t



Making a prediction

Look at X-
t

Make a guess about X+
t

Most general guess: distribution of X+
t

We only attend to some aspects of X-
t

mean, variance, phases of three largest Fourier modes, ...

so our guess is a function or statistic of X-
t

what’s a good statistic?



Predictive sufficiency

For any statistic σ
I[X+

t;X
-

t] ≥ I[X+
t;σ(X

-

t)]
σ is sufficient if

I[X+
t;X

-

t] = I[X+
t;σ(X

-

t)]
If σ is sufficient, then we only need to know it to 
minimize any loss function (Blackwell-Girshick) 
σ is sufficient if
I[Xt+1;Xt

-] = I[Xt+1;σ(Xt
-)]                         (one-step ahead)

σ(x-
t+1) = T(σ(x-

t),xt+1) for some T             (recursion)



past a and past b equivalent iff
Pr(Xt

+|Xt
-=a) = Pr(Xt

+|Xt
-=b)

[a] = all pasts equivalent to a
Statistic (“causal state”): 

ε(xt
-) =  [xt

-] = st

State ≡ conditional distribution ≡ histories
IID = 1 state, periodic = p states, ...

Causal states
(Crutchfield & Young 1989)



Histories and their conditional distributions



Partitioning histories into causal states



History

* “Statistical relevance basis” (Salmon 1971)
“Measure-theoretic prediction process” (Knight 1975)
* “Forecasting / true measure complexity” (Grassberger 1986)
“ε-machine” / “causal state model” (Crutchfield & Young 1989)
“Observable operator model” (Jaeger 1999)
“Predictive state representation” (Littman, Sutton & Singh 2002)



Future is independent of past given state
Xt

+ ⊥ Xt
- | St

∴ Recursive transitions for states

ε(x-
t+1) = T(ε(xt

-),xt+1)
∴ States are Markovian

St+1 ⊥ St-1 | St

Markov properties
(Shalizi & Crutchfield 2001)



Sufficiency:
I[Xt

+;Xt
-] = I[Xt

+;ε(Xt
-)]

because
Pr(Xt

+|St
 =ε(xt

-))

= ∫Pr(Xt
+|Xt

- =y)Pr(Xt
- =y|St

 =ε(xt
-)) dy

    y∈[ xt
-]

= Pr(Xt
+|Xt

- =xt
-)

Optimality properties
(Shalizi & Crutchfield 2001)



A non-sufficient partition



Effect of insufficiency on predictive distributions



Minimality

Can compute ε(Xt
-) from any other sufficient 

statistic: for any sufficient η there exists a 
function g such that

ε(Xt
-) = g(η(Xt

-))
Therefore, if η is sufficient,

I[ε(Xt
-);Xt

-] ≤ I[η(Xt
-);Xt

-]



Sufficient, but not minimal



Coarser than the causal states, but not sufficient



Statistical complexity

C ≡ I[ε(Xt
-);Xt

-] is the statistical  or forecasting 
complexity of the process

=H[ε(Xt
-)]

= amount of relevant information stored in the state
= average-case algorithmic sophistication
= log(period) for periodic processes
= log(geometric mean(recurrence time)) for stationary processes
= information about microstate in macroscopic observables 
(sometimes)



There is no other minimal sufficient statistic
If η is minimal, there there is an h such that 

η = h(ε)
but ε = g(η) so 

g(h(ε)) = ε
h(g(η)) = η

g = h-1 and ε and η partition histories in the 
same way

Uniqueness



If Rt is also sufficient, then
H[Rt+1|Rt] ≥ H[St+1|St]

Meaning: the causal states are the closest 
we get to a deterministic predictive model

Minimal stochasticity



Mostly model discovery



Key observation:
Recursion + next-step predictive sufficiency
⇒ general predictive sufficiency

Get next-step distribution right
Then make states recursive
Assume discrete observations & time, 
conditionally stationary

http://bactra.org/CSSR

CSSR
Causal State Splitting Reconstruction

(Shalizi & Klinkner 2004)



Start with one state, as if IID (history length = 0)

For each state, see if adding one symbol to histories 
in state makes a difference
If no, go to the next state
If yes, does the new distribution match an existing 
state?

Yes: move extended history to that state
No: move extended history into a new state

Stop when maximum history length reached



Do all the histories in a state make the same 
transition on the same symbol?
If not, split the state
Keep checking until no state needs to be split

Recursion



One pass through data
n data points, k symbols, maximum history length L
Everything-goes-wrong upper bound

O(n) + O(k2L+1)
L can be ≈ log(n)/(entropy rate) [Marton and Shields] 

Time Complexity



S = true causal state structure
S(n) = structure inferred from n data-points
Assume: finite # of states, every state has a 
finite history, using long enough histories

Prob(S(n) ≠ S) → 0
D = true distribution, D(n) = inferred
Error (L1) scales like independent samples

E[|D(n) - D|] = O(n-1/2)

Convergence



The Competition: 
Hidden State Models

What we can see is ugly (non-Markovian, 
non-stationary, etc.)
Hidden state: what we can’t see is nice
Usually: guess structure, see if it works

EM algorithm for parameters + states; Bayesian updating for state estimation
Mis-specification; complexity

State-space reconstruction
Entirely data-driven (Ruelle; Farmer, Packard, Crutchfield, Shaw; Takens)
No EM or Bayes needed
No good with stochastic dynamics



State
planets in space
54 dimensions

Observables
lights in sky

14 dimensions

m
easurem

ent

background light
resolution
instrument noise
atmospheric distortion
anatomical distortion
physiological noise
caffeination level
etc.



Hidden Markov models

Unobserved states St form a Markov process

Observation Xt = random function of St

Usually assume St+1 ⊥ Xt  St - not here!

Correspond to automata



a.k.a. Context Trees, Probabilistic Suffix Trees, ...
Split states so that state ≡ suffix
Automatically recursive
VLMM ⊂ CSSR
CSSR ⊄ VLMM

Variable-length Markov models
(Ron, Singer and Tishby; Buhlmann and Wyner; Kennel and Mees)



EM Algorithm + CV

Pick HMM architectures, fit with Expectation-
Maximization (Baum-Welch), use cross-validation 
to select model

Standard heuristic start: fully-connected HMM, 
with equiprobable state transitions

Selective (not constructive); needs multiple 
optimizations



Examples

The even process (very trivial)
Foulkes process (trivial)
Model neuron (perhaps not trivial)
Real neuron



Language: blocks of 
A’s, any length, 
separated by blocks of 
B’s, even length

Infinite-range 
correlation

Reconstructed with 
history length 3

The even process

with 10,000 symbols



States as classes of histories:

State 1 = *A, *ABB, *ABBBB, etc.
State 2 = *AB, *ABBB, *ABBBBB, etc.

VLMM needs ∞ states, CSSR needs 2

Generally true of sofic processes









Results: Even Process

1.27 (0.23) 1.10 (0.23) 6.6 (1.5) 1.6 (1.0)

1.25 (0.41) 0.19 (0.23) 5.6 (1.7) 2.2 (0.1)

1.15 (0.02) 0.02 (0.02) 2.0 (0) 2.0 (0)

CV
Distance

CSSR
States

CV
N

102

103

104

CSSR



7-state binary process

Introduced by Foulkes in 
1959 paper (JANET)

Can be put in context-
tree form

Used by Feldman & 
Hanna (1966) to study 
human learning

Foulkes process



Results: Foulkes Process

1.41 (0.23) 0.70 (0.12) 4.5 (2.1) 5.1 (1.5)

1.40 (0.17) 0.21 (0.06) 5.8 (2.7) 6.6 (0.8)

1.40 (0.11) 0.06 (0.01) 2.3 (0.7) 7.2 (0.6)

CV
Distance

CSSR
States

CV
N

102

103

104

CSSR
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1.40 (0.17) 0.21 (0.06) 5.8 (2.7) 6.6 (0.8)

1.40 (0.11) 0.06 (0.01) 2.3 (0.7) 7.2 (0.6)

CV
Distance

CSSR
States

CV
N

102

103

104

CSSR

1.41 (0.23) 0.70 (0.12) 4.5 (2.1) 5.1 (1.5)

1.40 (0.17) 0.21 (0.06) 5.8 (2.7) 6.6 (0.8)

1.40 (0.11) 0.06 (0.01) 2.3 (0.7) 7.2 (0.6)

CV
Distance

CSSR
States

CV
N

102

103

104

CSSR



Model neuron
(Klinkner, Shalizi & Camperi, NIPS 2005, 

q-bio.NC/0506009)

One of a system of noisy 
neurons which synchronize 
each other
1 time-step = 1 ms
refractory period of 19 ms



Actual neuron
data courtesy G. Gage/UM Center for Neural Prosthetics

Multi-electrode array (“Michigan probe”) durably 
implanted in motor cortex of awake, behaving rat

Up to 16 units recorded simultaneously

Data from motor-learning experiment

This neuron: Quiescence, isolated spikes, bursts 



Spike process, signal 34aMSpike process, signal 34aM

Spike process, signal 34a
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0.6

0.80.8M0.8M
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1.01.0M1.0M

1.0



Applications
crystallography

Varn and Crutchfield 2003

geomagnetic fluctuations
Clarke, Freeman & Watkins 2003

anomaly detection
A. Ray 2004

seismology
turbulent velocity series
natural language processing

Padro, 2005, 2006

neural coherence
Klinkner, Shalizi & Camperi 2005



Transducers, controlled dynamical systems
Spatio-temporal systems
Continuous-valued series ??

Estimating generating partitions? (Kennel & Buhl, Hirata 
et al., Bollt et al., ...)
Kernel density estimators?
Adaptive discretization? (Boschetti unpub.)

Higher-order languages   ????

Extensions



Mostly self-organization



Spatio-temporal systems
Not-so-good ideas:

• one absurdly-dimensional 
time series

• many independent time 
series

• turning into a 1D system, 
pathwise

Better: Local statistics based on 
“light-cone”
Repeat the analysis to get local 
causal states and complexity

past

future



Self-organization
(Shalizi, Klinkner & Haslinger PRL 2004)

“I know it when I see it”
Disputes: turbulence, ecology,...
Does self-organizing ⇒ irreversible?

Yes: Priogine, Nicolis; Haken; etc.
No: D’Souza, Margolus; Smith

Not self-organized criticality (necessarily)
Why not just use entropy?

Low entropy disorganized systems (low-temperature 
stat. mech.)
High entropy organized things (organisms)
Organization ↑ because entropy ↑ (self-assembly) 



System has self-organized between t1 and t2 if

(I) C(t1) < C(t2)

(II) the increase is not caused by outside input



Exorcism

Is the system being organized by its input?
Causal inference problem
Replace input with statistically-similar noise

Delgado and Sole 1997

Exclude non-noise inputs



Qualitative model of excitable media
K colors; a cell of color k switches to k+1 
(mod K) if at least T neighbors are already of 
that color
Analytic theory for structures formed

Griffeath et al.  

Spirals, “turbulence”, local oscillation, fixation

Cyclic cellular automata



T=1 T=4



T=2

T=3



CCA

(300x300, n = 30)



BTW sand-pile
(J.-B. Rouquier, unpublished)

(supra-threshold relaxation, 300x300, n=1)



Finding Coherent 
Structures

(Shalizi, Haslinger, Rouquier, Klinkner & Moore, PRE 2006)

Spatially extended, 
temporally persistent

Generated by the micro 
dynamics

More efficient and more 
comprehensible 
descriptions  (“emergent”)



Order parameters

OP measures symmetry 
breaking

Φ = f(OP)

-log(Pr(config)) ∝ ∫Φ dx

Structures = defects in OP field

OP found by trial and error



Complexity field

Local description length

C = -log(Pr(state))

Automatic; no tradition needed



A logical relation between levels of description
The higher-level one is more interesting than 
the lower

Thermodynamics emerges from statistical mechanics
Chemistry from quantum mechanics
Classical mechanics from quantum mechanics
Superconductivity and Ohm’s Law from quantum mechanics
Demographic fluctuations from the 4Fs of animal behavior
Evolutionary arms races from population genetics
Efficiency (or bubbles) from microeconomic exchange
Neurons, termites, ...

Emergence



Ecosystems

Organisms

Organs

Tissues
Cells

Organelles

Functional 
systems

Metabolic
networks

Macromolecules

Monomers

Atoms

Subatomic particles

(turtles↓)*



“emergent” = “could not be predicted”
predicted from what?

“water isn’t like hydrogen and oxygen”: so?
give us our interactions!

predicted by who?
why should you care about my mathematical weakness?

can computable systems show emergence?
trivial or incomprehensible?

neither is fruitful

The bad idea



Try again

The higher levels are not as detailed
“Data abstraction”
Why hide details?
What do we want that information for?



Efficiency of prediction
(Palmer 2001)

Bits needed for prediction? C = I[St;X
-
t]

How many bits of prediction do you get?
Predictive information E = I[X+

t;X
-
t]

Always need at least as much as you get
E  ≤ C

So efficiency is
0 ≤ E/C ≤ 1

For a Markov process
E = C - H[Xt+1|St]



Multiple levels

Low-level variables X
High-level variables Y, derived from X
Each has its own predictive structure
eff(X) ≠ eff(Y)



A definition

If eff(Y) > eff(X), then Y emerges from X
Y abstracts relevant features from details of X
Depends on both the abstraction and the low-
level dynamics
Different abstractions can emerge from the same 
low-level dynamics

In the same situation (organs vs. functional systems)
In different situations (Ohm’s law vs. superconductivity)

Lattices, not chains or trees



Thermo

1 cc of argon at STP
At the molecular level, efficiency ≈ 10-9

(from scattering theory for entropy production)

At the thermodynamic level, efficiency ≈ 1 
(from Onsager theory)

Gain of 109 ∴ strongly emergent



Self-organization vs. 
emergence

Process over time on one level
vs. logical relationship between levels
Emergent properties if C(t) constant

Thermodynamics, for instance

C(t) rising makes emergence more helpful
“Why is my closet so full of my clothes?”



Extracting emergent 
variables

Nice, if we could do it!
All sorts of tricks for dimension reduction, 
feature selection, ...
Maybe: Look at the structure of the optimal 
predictor - it’s already filtering for relevance


